

pyramid_authsanity

pyramid_authsanity is an authentication policy for the Pyramid Web Framework [https://docs.pylonsproject.org/projects/pyramid] that strives to make it
easier to write a secure authentication policy that follows web best practices.

	Uses tickets to allow sessions to be prematurely ended. Don’t depend on the
expiration of a cookie for example, instead have the ability to terminate
sessions server side.

	Stops session fixation by automatically clearing the session upon
login/logout. Sessions are also cleared if the new session is for a different
userid than before.

	Automatically adds the Vary HTTP header if the authentication policy is used.

pyramid_authsanity uses Michael Merickel’s [http://michael.merickel.org]
absolutely fantastic pyramid_services [https://github.com/mmerickel/pyramid_services] to allow an application
developer to easily plug in their own sources, and interact with their user
database.

API Documentation

Reference material for every public API exposed by pyramid_authsanity:

	pyramid_authsanity

	pyramid_authsanity.interfaces

	pyramid_authsanity.sources

Narrative Documentation

Narrative documentation that describes how to use this library, with some
examples.

	The authentication policy

Other Matters

	Frequently Asked Questions
	Why tickets?

	What is session fixation?

	Vary headers

	License

pyramid_authsanity

Authentication Service Policy

	
class pyramid_authsanity.AuthServicePolicy(debug=False)[source]

	
	
authenticated_userid(request)[source]

	Returns the authenticated userid for this request.

	
effective_principals(request)[source]

	A list of effective principals derived from request.

	
forget(request)[source]

	A list of headers which will delete appropriate cookies.

	
remember(request, principal, **kw)[source]

	Returns a list of headers that are to be set from the source service.

	
unauthenticated_userid(request)[source]

	We do not allow the unauthenticated userid to be used.

pyramid_authsanity.interfaces

SourceService

	
interface pyramid_authsanity.interfaces.IAuthSourceService[source]

	Represents an authentication source.

	
vary

	List of HTTP headers to Vary the response by.

	
get_value()

	Returns the opaque value that was stored.

	
headers_remember(value)

	Returns any and all headers for remembering the value, as a list.
Value is a standard Python type that shall be serializable using
JSON.

	
headers_forget()

	Returns any and all headers for forgetting the current requests
value.

AuthService

	
interface pyramid_authsanity.interfaces.IAuthService[source]

	Represents an authentication service. This service verifies that the
users authentication ticket is valid and returns groups the user is a
member of.

	
userid()

	Return the current user id, None, or raise an error. Raising an
error is used when no attempt to verify a ticket has been made yet and
signifies that the authentication policy should attempt to call
verify_ticket

	
groups()

	Returns the groups for the current user, as a list. Including the
current userid in this list is not required, as it will be implicitly
added by the authentication policy.

	
verify_ticket(principal, ticket)

	Verify that the principal matches the ticket given.

	
add_ticket(principal, ticket)

	Add a new ticket for the principal. If there is a failure, due to a
missing/non-existent principal, or failure to add ticket for principal,
should raise an error

	
remove_ticket(ticket)

	Remove a ticket for the current user. Upon success return True

pyramid_authsanity.sources

Session Authentication Source

	
pyramid_authsanity.sources.SessionAuthSourceInitializer(value_key='sanity.')[source]

	An authentication source that uses the current session

Cookie Authentication Source

	
pyramid_authsanity.sources.CookieAuthSourceInitializer(secret, cookie_name='auth', secure=False, max_age=None, httponly=False, path='/', domains=None, debug=False, hashalg='sha512')[source]

	An authentication source that uses a unique cookie.

Authorization Header Authentication Source

	
pyramid_authsanity.sources.HeaderAuthSourceInitializer(secret, salt='sanity.header.')[source]

	An authentication source that uses the Authorization header.

The authentication policy

This authentication policy has two moving pieces, they work together to provide
an easy to use authenitcation policy that provides more security by allowing
the server to terminate an active authentication session.

Source Service

The first piece is called the authentication source service, this stores the
principal and a ticket. There are two provided source services:

cookie

This is the default source and stores the information in a JSON encoded cookie
that is signed using HMAC. This secures the information so long as the secret
key for the HMAC is not made public.

session

This source stores the information required for the authentication in the
Pyramid session, this requires that a session is available in the application
as request.session. Since there is no requirement for a Pyramid application
to have a registered session, pyramid_authsanity decided to not make this the
default.

Authentication Service

The authentication service is defined by the user, the primary goal is to
verify that the principal and ticket are both still valid.

Frequently Asked Questions

Why tickets?

If you have a web application that uses a simple signed cookie that contains
information about the signed in user, the login will not expire until the
cookie’s expiration. This can leave gaps in security.

Take the scenario of an employee that uses their own device for business, they
log in in the morning before heading into the office and the cookie is set to
authenticate them for 12 hours. They go buy some coffee and put their phone
down. Walking out they leave the phone on a table. Once they find out they
notify the company about the lost phone, however since the authentication
cookie is their username, there is no way to terminate the existing session,
and were an attacker able to use their phone they would be able to continue
using the web application for the next 12 hours.

Tickets are stored server side, and for each device/login there will be a
unique ticket. These can be individually removed, and as soon as it is removed
the authentication is no longer valid.

Facebook/Google for example also allow the user to view their sessions, and
terminate one, or all of them. This ticket based system allows for the same
user interaction, thereby allowing more control over who is logged in or why.

If a user changes their password, tickets give the ability to log out all
pre-existing sessions so that the user is required to login again on any and
all devices.

What is session fixation?

Session fixation is an attack that permits an attacker to hijack a valid
session. Generally this is done by going to the website and retrieving an
session, that session is then given to the victim. As soon as the victim logs
in, the attacker who still has the same session token is able to see what is
being stored in the session which may potentially leak data. For authentication
policies that store the authentication in the session this would give the
attacker full control over the victim’s account.

You stop session fixation by dropping the session when going across an
authentication boundary (login/logout). This will recreate the session from
scratch, which leaves the attacker with a session that is worthless.

Vary headers

When an HTTP request is made, the content is usually cached for as long as
possible to avoid having to do more trips to the backend server (for reverse
proxies) and more requests to the server for browsers. However proxies and
browsers can’t know that the page for example contains information that is
dependent on a particular HTTP header, that is where the vary HTTP header
comes in.

Using vary you can tell the proxies or web browser that this page is to be
cached, but it is dependent on a particular header. For example vary:
cookie means the cache is allowed to return the page without requesting
information from the backend server so long the cookie the client sends is the
exact same as at the time of the previous response generated.

For more take a look at RFC7231 section 7.1.4 [http://tools.ietf.org/html/rfc7231#section-7.1.4] which explains what this
header does and means.

License

Copyright (c) 2015-2017 Bert JW Regeer;

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

 Python Module Index

 i |
 p |
 s

 		 	

 		
 i	

 	
 	
 pyramid_authsanity.interfaces	

 		 	

 		
 p	

 	
 	
 pyramid_authsanity	

 		 	

 		
 s	

 	
 	
 pyramid_authsanity.sources	

Index

 A
 | C
 | E
 | F
 | G
 | H
 | I
 | P
 | R
 | S
 | U
 | V

A

 	
 	add_ticket() (pyramid_authsanity.interfaces.IAuthService method)

 	
 	authenticated_userid() (pyramid_authsanity.AuthServicePolicy method)

 	AuthServicePolicy (class in pyramid_authsanity)

C

 	
 	CookieAuthSourceInitializer() (in module pyramid_authsanity.sources)

E

 	
 	effective_principals() (pyramid_authsanity.AuthServicePolicy method)

F

 	
 	forget() (pyramid_authsanity.AuthServicePolicy method)

G

 	
 	get_value() (pyramid_authsanity.interfaces.IAuthSourceService method)

 	
 	groups() (pyramid_authsanity.interfaces.IAuthService method)

H

 	
 	HeaderAuthSourceInitializer() (in module pyramid_authsanity.sources)

 	
 	headers_forget() (pyramid_authsanity.interfaces.IAuthSourceService method)

 	headers_remember() (pyramid_authsanity.interfaces.IAuthSourceService method)

I

 	
 	IAuthService (interface in pyramid_authsanity.interfaces)

 	
 	IAuthSourceService (interface in pyramid_authsanity.interfaces)

P

 	
 	pyramid_authsanity (module)

 	
 	pyramid_authsanity.interfaces (module)

 	pyramid_authsanity.sources (module)

R

 	
 	remember() (pyramid_authsanity.AuthServicePolicy method)

 	
 	remove_ticket() (pyramid_authsanity.interfaces.IAuthService method)

S

 	
 	SessionAuthSourceInitializer() (in module pyramid_authsanity.sources)

U

 	
 	unauthenticated_userid() (pyramid_authsanity.AuthServicePolicy method)

 	
 	userid() (pyramid_authsanity.interfaces.IAuthService method)

V

 	
 	vary (pyramid_authsanity.interfaces.IAuthSourceService attribute)

 	
 	verify_ticket() (pyramid_authsanity.interfaces.IAuthService method)

 All modules for which code is available

	pyramid_authsanity.interfaces

	pyramid_authsanity.policy

	pyramid_authsanity.sources

 Source code for pyramid_authsanity.interfaces

from zope.interface import Attribute, Interface

[docs]class IAuthSourceService(Interface):
 """ Represents an authentication source. """

 vary = Attribute("List of HTTP headers to Vary the response by.")

 def get_value():
 """ Returns the opaque value that was stored. """

 def headers_remember(value):
 """Returns any and all headers for remembering the value, as a list.
 Value is a standard Python type that shall be serializable using
 JSON."""

 def headers_forget():
 """Returns any and all headers for forgetting the current requests
 value."""

[docs]class IAuthService(Interface):
 """Represents an authentication service. This service verifies that the
 users authentication ticket is valid and returns groups the user is a
 member of."""

 def userid():
 """Return the current user id, None, or raise an error. Raising an
 error is used when no attempt to verify a ticket has been made yet and
 signifies that the authentication policy should attempt to call
 ``verify_ticket``"""

 def groups():
 """Returns the groups for the current user, as a list. Including the
 current userid in this list is not required, as it will be implicitly
 added by the authentication policy."""

 def verify_ticket(principal, ticket):
 """ Verify that the principal matches the ticket given. """

 def add_ticket(principal, ticket):
 """Add a new ticket for the principal. If there is a failure, due to a
 missing/non-existent principal, or failure to add ticket for principal,
 should raise an error"""

 def remove_ticket(ticket):
 """ Remove a ticket for the current user. Upon success return True """

 Source code for pyramid_authsanity.policy

import base64
import os

from pyramid.authorization import Authenticated, Everyone
from pyramid.interfaces import IAuthenticationPolicy, IDebugLogger
from zope.interface import implementer

from .util import _find_services, _session_registered, add_vary_callback

def _clean_principal(princid):
 """Utility function that cleans up the passed in principal
 This can easily also be extended for example to make sure that certain
 usernames are automatically off-limits.
 """
 if princid in (Authenticated, Everyone):
 princid = None
 return princid

_marker = object()

[docs]@implementer(IAuthenticationPolicy)
class AuthServicePolicy(object):
 def _log(self, msg, methodname, request):
 logger = request.registry.queryUtility(IDebugLogger)
 if logger:
 cls = self.__class__
 classname = cls.__module__ + "." + cls.__name__
 methodname = classname + "." + methodname
 logger.debug(methodname + ": " + msg)

 _find_services = staticmethod(_find_services) # Testing
 _session_registered = staticmethod(_session_registered) # Testing
 _have_session = _marker

 def __init__(self, debug=False):
 self.debug = debug

[docs] def unauthenticated_userid(self, request):
 """ We do not allow the unauthenticated userid to be used. """

[docs] def authenticated_userid(self, request):
 """ Returns the authenticated userid for this request. """
 debug = self.debug

 (sourcesvc, authsvc) = self._find_services(request)
 request.add_response_callback(add_vary_callback(sourcesvc.vary))

 try:
 userid = authsvc.userid()
 except Exception:
 debug and self._log(
 "authentication has not yet been completed",
 "authenticated_userid",
 request,
)
 (principal, ticket) = sourcesvc.get_value()

 debug and self._log(
 "source service provided information: (principal: %r, ticket: %r)"
 % (principal, ticket),
 "authenticated_userid",
 request,
)

 # Verify the principal and the ticket, even if None
 authsvc.verify_ticket(principal, ticket)

 try:
 # This should now return None or the userid
 userid = authsvc.userid()
 except Exception:
 userid = None

 debug and self._log(
 "authenticated_userid returning: %r" % (userid,),
 "authenticated_userid",
 request,
)

 return userid

[docs] def effective_principals(self, request):
 """ A list of effective principals derived from request. """
 debug = self.debug
 effective_principals = [Everyone]

 userid = self.authenticated_userid(request)
 (_, authsvc) = self._find_services(request)

 if userid is None:
 debug and self._log(
 "authenticated_userid returned %r; returning %r"
 % (userid, effective_principals),
 "effective_principals",
 request,
)
 return effective_principals

 if _clean_principal(userid) is None:
 debug and self._log(
 (
 "authenticated_userid returned disallowed %r; returning %r "
 "as if it was None" % (userid, effective_principals)
),
 "effective_principals",
 request,
)
 return effective_principals

 effective_principals.append(Authenticated)
 effective_principals.append(userid)
 effective_principals.extend(authsvc.groups())

 debug and self._log(
 "returning effective principals: %r" % (effective_principals,),
 "effective_principals",
 request,
)
 return effective_principals

[docs] def remember(self, request, principal, **kw):
 """ Returns a list of headers that are to be set from the source service. """
 debug = self.debug

 if self._have_session is _marker:
 self._have_session = self._session_registered(request)

 prev_userid = self.authenticated_userid(request)

 (sourcesvc, authsvc) = self._find_services(request)

 request.add_response_callback(add_vary_callback(sourcesvc.vary))

 value = {}
 value["principal"] = principal
 value["ticket"] = ticket = (
 base64.urlsafe_b64encode(os.urandom(32)).rstrip(b"=").decode("ascii")
)

 debug and self._log(
 "Remember principal: %r, ticket: %r" % (principal, ticket),
 "remember",
 request,
)

 authsvc.add_ticket(principal, ticket)

 # Clear the previous session
 if self._have_session:
 if prev_userid != principal:
 request.session.invalidate()
 else:
 # We are logging in the same user that is already logged in, we
 # still want to generate a new session, but we can keep the
 # existing data
 data = dict(request.session.items())
 request.session.invalidate()
 request.session.update(data)
 request.session.new_csrf_token()

 return sourcesvc.headers_remember([principal, ticket])

[docs] def forget(self, request):
 """ A list of headers which will delete appropriate cookies."""
 debug = self.debug

 if self._have_session is _marker:
 self._have_session = self._session_registered(request)

 (sourcesvc, authsvc) = self._find_services(request)

 request.add_response_callback(add_vary_callback(sourcesvc.vary))

 (_, ticket) = sourcesvc.get_value()

 debug and self._log("Forgetting ticket: %r" % (ticket,), "forget", request)
 authsvc.remove_ticket(ticket)

 # Clear the session by invalidating it
 if self._have_session:
 request.session.invalidate()

 return sourcesvc.headers_forget()

 Source code for pyramid_authsanity.sources

from webob.cookies import JSONSerializer, SignedCookieProfile, SignedSerializer
from zope.interface import implementer

from .interfaces import IAuthSourceService

[docs]def SessionAuthSourceInitializer(value_key="sanity."):
 """ An authentication source that uses the current session """

 value_key = value_key + "value"

 @implementer(IAuthSourceService)
 class SessionAuthSource(object):
 vary = []

 def __init__(self, context, request):
 self.request = request
 self.session = request.session
 self.cur_val = None

 def get_value(self):
 if self.cur_val is None:
 self.cur_val = self.session.get(value_key, [None, None])

 return self.cur_val

 def headers_remember(self, value):
 if self.cur_val is None:
 self.cur_val = self.session.get(value_key, [None, None])

 self.session[value_key] = value
 return []

 def headers_forget(self):
 if self.cur_val is None:
 self.cur_val = self.session.get(value_key, [None, None])

 if value_key in self.session:
 del self.session[value_key]
 return []

 return SessionAuthSource

[docs]def CookieAuthSourceInitializer(
 secret,
 cookie_name="auth",
 secure=False,
 max_age=None,
 httponly=False,
 path="/",
 domains=None,
 debug=False,
 hashalg="sha512",
):
 """ An authentication source that uses a unique cookie. """

 @implementer(IAuthSourceService)
 class CookieAuthSource(object):
 vary = ["Cookie"]

 def __init__(self, context, request):
 self.domains = domains

 if self.domains is None:
 self.domains = []
 self.domains.append(request.domain)

 self.cookie = SignedCookieProfile(
 secret,
 "authsanity",
 cookie_name,
 secure=secure,
 max_age=max_age,
 httponly=httponly,
 path=path,
 domains=domains,
 hashalg=hashalg,
)
 # Bind the cookie to the current request
 self.cookie = self.cookie.bind(request)

 def get_value(self):
 val = self.cookie.get_value()

 if val is None:
 return [None, None]

 return val

 def headers_remember(self, value):
 return self.cookie.get_headers(value, domains=self.domains)

 def headers_forget(self):
 return self.cookie.get_headers(None, max_age=0)

 return CookieAuthSource

[docs]def HeaderAuthSourceInitializer(secret, salt="sanity.header."):
 """ An authentication source that uses the Authorization header. """

 @implementer(IAuthSourceService)
 class HeaderAuthSource(object):
 vary = ["Authorization"]

 def __init__(self, context, request):
 self.request = request
 self.cur_val = None

 serializer = JSONSerializer()
 self.serializer = SignedSerializer(
 secret,
 salt,
 serializer=serializer,
)

 def _get_authorization(self):
 try:
 type, token = self.request.authorization

 return self.serializer.loads(token)
 except Exception:
 return None

 def _create_authorization(self, value):
 try:
 return self.serializer.dumps(value)
 except Exception:
 return ""

 def get_value(self):
 if self.cur_val is None:
 self.cur_val = self._get_authorization() or [None, None]

 return self.cur_val

 def headers_remember(self, value):
 if self.cur_val is None:
 self.cur_val = None

 token = self._create_authorization(value)
 auth_info = str(b"Bearer " + token, "latin-1", "strict")
 return [("Authorization", auth_info)]

 def headers_forget(self):
 if self.cur_val is None:
 self.cur_val = None

 return []

 return HeaderAuthSource

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 pyramid_authsanity

 		
 pyramid_authsanity

 		
 Authentication Service Policy

 		
 pyramid_authsanity.interfaces

 		
 SourceService

 		
 AuthService

 		
 pyramid_authsanity.sources

 		
 Session Authentication Source

 		
 Cookie Authentication Source

 		
 Authorization Header Authentication Source

 		
 The authentication policy

 		
 Source Service

 		
 cookie

 		
 session

 		
 Authentication Service

 		
 Frequently Asked Questions

 		
 Why tickets?

 		
 What is session fixation?

 		
 Vary headers

 		
 License

_static/up-pressed.png

_static/up.png

